الگوی پیش بین های عملکرد استراتژی تجاری سازی مستقل در صنعت داروهای زیستی ایران

نویسندگان

1 گروه مدیریت تکنولوژی، دانشکده اقتصاد و مدیریت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، واحد یادگار امام خمینی(ره)، دانشگاه آزاد اسلامی، شهر ری، ایران

4 استاد گروه مدیریت فناوری اطلاعات، دانشکده علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

10.22111/jmr.2022.7317

چکیده

زیست­فناوری پزشکی یا درمانی به توسعه ابزارهای تحقیقاتی، تشخیص، توسعه و تحویل داروها و واکسن­ها از طریق استفاده از سیستم­ها یا فرآیندهای سلولی و مولکول­های زیستی اختصاص دارد. یک انتخاب استراتژیک بسیار مهم شرکت­ها در صنعت­ داروهای زیستی، استراتژی تجاری­سازی فناوری است. استراتژی تجاری­سازی مستقل به­عنوان یکی از استراتژی­های تجاری­سازی داروهای زیستی در دنیا شناخته شده است. هدف پژوهش حاضر شناسایی پیش­بین­های عملکرد استراتژی تجاری­سازی مستقل در صنعت زیست­داروی ایران با استفاده از روش فراترکیب است. در این روش پس از فیلتر مقالات، در نهایت تعداد 42 تحقیق که بطور مستقیم به موضوع عملکرد تجاری­سازی مستقل در داروهای زیستی پرداخته بودند وارد مرحله تحلیل در نرم­افزار مکس­کیودا شدند. پس از مرحله تلفیق تعداد 68 رمز متمایز شناسایی، و در سطوح انتزاع بالاتر رمزها در قالب 9 تم (جهت­گیری استراتژیک، هوش تجاری­سازی فناوری، قابلیت R&D، یکپارچگی دانش توسعه محصول، قابلیت تجاری­سازی (تولید و بازاریابی)، مکانیسم حمایتی دولت و رژیم­های مالکیت، یکپارچگی رسمی و پویائی محیطی) قرار داده شدند. به­منظور ساخت مدل مفهومی پژوهش، براساس خروجی فراترکیب، سازه­های پیش­بین عملکرد استراتژی تجاری­سازی مستقل، نحوه ارتباط سازه­ها و نیز شاخص­های اندازه­گیری آنها استخراج شدند. نتیجه اعتبارسنجی مدل پیشنهادی براساس نظر خبرگان صنعت زیست­داروئی کشور با روش رتبه اعتبار محتوایی لاوش و تکنیک حداقل مربعات جزئی از این قرار است: پیش­بین­های عملکرد استراتژی تجاری­سازی مستقل با ضریب تعیین 91% عبارتند از: یکپارچگی رسمی و غیررسمی، جهت­گیری­های استراتژیک، هوش تجاری­سازی فناوری، قابلیتR&D، قابلیت تولید و بازاریابی.

کلیدواژه‌ها


عنوان مقاله [English]

The Model of Performance Predictors of Independent Commercialization Strategy in the Iranian Bio-Pharmaceutical Industry

نویسندگان [English]

  • Roya Shakeri 1
  • Reza Radfar 2
  • Nazanin Pilevari 3
  • Seyyed Sepehr Ghazi-Nouri 4
1 Technology Management department, Faculty of Economics and Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Professor of Industrial Management, Faculty of Economics and Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Industrial Management, Faculty of Management and Accounting, Yadgar Imam Khomeini Unit, Islamic Azad University, Rey, Iran
4 Professor of Information Technology Management, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Abstract
Medical or therapeutic biology is dedicated to the development of research tools, diagnosis, development and delivery of drugs and vaccines through the use of cellular systems or processes and biological molecules. A very important strategic choice of companies in the biological drug industry is technology trading strategy. Independent commercialization strategy is recognized as one of the trade drugs in the world. The purpose of the present study is to identify predictions for the performance of independent commercialization strategy in Iran's biological industry using a comprehensive method. In this method, after the filtering of the articles, finally 42 studies that directly addressed the performance of independent commercialization in biological drugs entered the analysis phase of the Maxicioda software. After the combination of 68 distinct passwords, and at higher abstraction levels of the passwords in the form of 9 themes (strategic orientation, technology commercialization intelligence, R&D capability, product development knowledge integration, commercialization (production and marketing), The state -supporting mechanism of government and ownership regimes, formal integration and environmental dynamics were set. In order to construct the conceptual model of the research, they were extracted based on the component output, predictive structures of independent trading strategy, how the structures communication, and their measurement indicators were extracted. The validity of the proposed model based on the country's biotechnology experts with the Lavos content validity method and the minimum square minimum technique is: Independent commercial strategy performance predictions with a 91% determination coefficient include: Official integrity and integrity. Innovation, strategic orientation, technology commercialization, R&D capability, production capability and marketing.
Introduction
Biotechnology is an important part of the society and economy of Iran. In the world, 140 drugs are produced from biotechnology, of which 16 are the most commonly used drugs. Nowadays 9 biotechnology and vaccine drugs such as hepatitis B drugs and various types of interferons (alpha, gamma and beta) are produced inside the country, producing 250 billion tomans worth of currency savings for the country. About $ 8 billion worth of biotechnology imports into the country are expected to cost $ 150 billion annually, which is expected to increase by about 900-800 billion USD annually. Biotechnology drugs are expensive drugs and if we can plan to produce these drugs in the next five years, we have to pay a thousand billion dollars for the import of such drugs, which will disrupt the health and medicine system of the country. This implicitly implies the necessity of commercialization, the formulation of commercialization strategies, and the successful performance of commercialization strategies in the field of biotechnology (Kebriaeezadeh et al., 2010). The question that is posed is that the predictors (determinants) of the operation of the independent commercialization strategy in Iran's bio-environmental industry?
Case Study
In the present research, the industry of biological drugs in Iran has been studied.
Materials and Method
The present study is based on the results of development; on the basis of purpose, explanatory-descriptive and based on the type of data is quantitative and the research quality is a hypothesis test. The design of the research has been done according to the five-step approach presented by McKinsey et al. (1999). Accordingly, the research stages are as follows: the design of the research includes the explanation of the problem and the review of the theoretical background; the formulation of a conceptual framework and the determination of the components and relevant indicators; validation of the research including general validation, validation of the research tool and data collection; analysis and Data analysis; Reporting the results of the research including summarizing the findings of research and writing the analyzes of the researchers.
Results and Discussion
Considering the content validity ratios calculated, in the conceptual model, the predictors of the performance of the independent commercialization strategy, the factors; the strategic orientation, the formal and informal integration of research units with the units of production and marketing, the ability to R & D, commercialization and intelligence of technology commercialization are the determinants of the operation of an independent commercialization strategy in the country's biotechnology industry.According to the model of performance prediction of independent commercialization strategy in the country's biotechnology industry, the following hypotheses have been developed.
Hypothesis 1. There is a significant relationship between BI-technology intelligence and the performance of the development of a new biological medicine.
Hypothesis 2. There is a significant relationship between the integrity (formal and informal) and the performance of the development of the new biological drug.
Hypothesis 3. There is a significant relationship between firm strategic orientation and technology commercialization intelligence.
Hypothesis 4. There is a significant relationship between the R & D capability and the performance of the new biological drug development.
Hypothesis 5. There is a significant relationship between the commercialization (production and marketing) of the firm and the performance of the development of the new biological drug.
Hypothesis 6. There is a significant relationship between R & D capability and commercialization (production and marketing) capabilities of the firm.
Conclusion
Considering the significant relationships between the structure of the company's research and development capability, the structure of the enterprise's commercialization (production and marketing), the strategic directional structure of the firm, the formal and informal integration structure, the technology intelligence technology intelligence structure with the performance of the new product development, It can be said that in the case of: the existence of a suitable R & D workforce, proportional investment in R & D, and ..., we can expect a successful performance (the realization of new product objectives; new product life cycle management; the success of engaging in business activities; Making technology in comparison with direct rivals of the company; a significant increase in corporate revenues versus commercialization revenues Direct use; the company's more successful use of technology commercialization for strategic purposes in comparison with its competitors; providing unique features to customers; increasing the number of patents obtained from the new product development program; receiving good returns to costs; The program used for the new product development program and the competitiveness of the new product in the market) had an independent commercialization strategy.

کلیدواژه‌ها [English]

  • Bio-Pharmaceutical industry
  • independent strategy
  • commercialization performance
منابع فارسی
خمسه، عباس.، صادقی مرزناکی، یداله. (1397). توسعه مدل مدیریت نوآوری در شرکت­های پتروشیمی تولیدکننده محصولات پلی­اتیلنی و اولویت­بندی عوامل با فرآیند تحلیل شبکه­ای فازی، فصلنامه دانش حسابداری و حسابرسی مدیریت، سال هفتم، شماره 27، صص: 163-180.
شاکری، رویا. (1400). بکارگیری رویکرد فراترکیب جهت ارائه الگوی پیامدهای یادگیری­زدائی سازمانی، فصلنامه آموزش و توسعه منابع انسانی، سال هشتم، شماره 30، صص: 240-256.
شاکری، رویا. (1400). عملکرد راهبرد تجاری­سازی خرید و ادغام؛ طراحی و تبیین الگو در صنعت داروهای زیستی ایران، نشریه اندیشه مدیریت راهبردی، سال پانزدهم شماره 2 (پیاپی 30)، صص: 237-270.
شاکری، رویا.، یعقوبی، نورمحمد. (1400). عملکرد استراتژی تجاری­سازی مشارکتی: ائتلاف استراتژیک، نشریه علمی کاوشهای مدیریت بازرگانی، سال سیزدهم، شماره بیست و ششم، پاییز و زمستان.
 
References
Ardito, L., Messeni Petruzzelli, A., Pascucci, F., & Peruffo, E. (2019). Inter‐firm R&D collaborations and green innovation value: The role of family firms' involvement and the moderating effects of proximity dimensions, Business Strategy and the Environment, 28(1), 185–197.
Birkinshaw, J., H. Bresman and L. Håkanson, (2000). Managing the post-acquisition integration process: how the human integration and task integration processes interact to foster value creation, Journal of Management Studies, 37: 395–426.
Chang, S.C., Tsai, M.T. (2013). The effect of prior alliance experience on acquisition performance, Applied Economics, 45: 765–773.
Conceicao, P., Hamill, D., Pinheiro, P. (2002). Innovative science and technology commercialization strategies at 3M: a case study, Journal of Engineering and Technology Management, Volume 19, Issue 1, PP: 25–38.
Deng, P. (2010). What Determines Performance of Cross-Border M&As by Chinese Companies? An Absorptive Capacity Perspective, Thunderbird International Business Review, Vol. 52, No. 6, PP: 509-524.
Devarakonda, R., Reuer, J.J., Tadikonda, H. (2022). Founder social capital and value appropriation in R&D alliance agreements, Research Policy, Vol. 51, Issue. 4, Article 104474.
Drewniak, R., & Karaszewski, R. (2019). Diffusion of knowledge in strategic alliance: Empirical evidence, International Entrepreneurship and Management Journal, 16, 387–416.
Fink, M., Harms, R. (2012). Contextualizing the relationship between self-commitment and performance: Environmental and behavioural uncertainty in (cross-border) alliances of SMEs, Entrepreneurship & Regional Development, Vol. 24, Nos. 3–4: 161–179.
Frishammar, J., Lichtenthaler, U., Rundquist, J. (2012). Identifying Technology Commercialization Opportunities: The Importance of Integrating Product Development Knowledge, INNOV MANAG, Vol. 29, No.4, pp:573–589. 
Galli Geleilate, J.M., Parente, R.C., Talay, M.B. (2021). Can systems integration lead to improved performance? The role of strategic alliances, Industrial Marketing Management, Vol. 95, PP:17-28.
Geleilate, J. M. G., Parente, R. C., & Talay, M. B. (2021). Can systems integration lead to improved performance? The role of strategic alliances, Industrial Marketing Management, 95, 17–28.
Haeussler, C. (2010). The Determinants of Commercialization Strategy: Idiosyncrasies in British and German Biotechnology, ENTREPRENEURSHIP THEORY and PRACTICE  (E T&P), pp: 653-681.
Haleblian, J., Finkelstein, S. (1999). The Influence of Organizational Acquisition Experience on Acquisition Perfornnance: A Behavioral Learning Perspective, Administrative Science Quarterly, 44: 29-56.
Hess, A.M., Rothaermel, F. T (2011). When are assets complementary? Star scientists, strategic alliances, and innovation in the pharmaceutical industry, Strategic Management Journal, Vol.32, pp:895-909.  
Jiang, X., Yang, Y., Pei, Y. L., & Wang, G. (2016). Entrepreneurial orientation, strategic alliances, and firm performance: Inside the black box, Long Range Planning, 49(1), 103–116.
Kale, P., & Singh, H. (2007). Building firm capabilities through learning: The role of the alliance learning process in alliance capability and firm-level alliance success, Strategic Management Journal, 28, pp: 981-1000.
Kale, P., and Singh, H. (2009). Managing Strategic Alliances: What Do We Know Now, and Where Do We Go From Here?, Academy of management perspectives, pp:45-62.
Kale, P., Dyer, J., & Singh, H. (2002). Alliance capability, stock market response and long-term alliance success: The role of alliance function, Strategic Management Journal, 23, pp: 747-767.
Kebriaeezadeh, A., Nassiri Koopaei, N., Abdollahiasl, A., Nikfar, SH., Mohamadi, N. (2010). Trend analysis of the pharmaceutical market in Iran; 1997–2010; policy implications for developing Countries. 
 Khamseh, A., Sadeghi Marzkhaki. (2018). Development of Innovation Management Model in Petrochemical Companies Manufacturing Polyethylene Products and Priority Factors with Fuzzy Network Analysis Process, Journal of Accounting and Management Audit, Seventh Year, No. 27, pp. 163-180(In Persian)
Kim, J. (2011). Alliance governance and technological performance: some evidence from biotechnology alliances, Industrial and Corporate Change, Vol.20, N0.4, pp:969–990.
Kim, S.K., Lee, B.G.,Park, B.S., Oh, K.S. (2011). The effect of R&D, technology commercialization capabilities and innovation performance,  technological and economic development of economy, Vol. 17, No.4, PP: 563-578.
Lane, P.J., Salk, J.A., Lyles, M.A. (2001). Absorptive capacity, learning, and performance in international joint ventures, Strategic Management Journal, 22: 1139–1161.
Lawshe, C.H. (1975). A quantitative approach to content validity, Personnel Psychology, 28, 563-575.
Li, L., Jiang, F., Pei, Y., & Jiang, N. (2017). Entrepreneurial orientation and strategic alliance success: The contingency role of relational factors, Journal of Business Research, 72, 46–56.
Liang, W., Elrod, S., McFarland, D.A., Zo., J. (2022). Systematic analysis of 50 years of Stanford University technology transfer and commercialization, Patterns, Volume 3, Issue 9, pp:1-10.
Link, A.N., Scott, J.T. (2010). Government as entrepreneur: evaluating the commercialization success of SBIR projects, Research policy 39, pp: 589-601.
Liu, T. H., & Hsiao, Y. C. (2019). Fitting cooperative mode in inter-organizational strategic alliance: A perspective from innovative and financial performances, The Journal of Technology Transfer, 44(1), 73–96.
Matysiak, L., Rugman, A.M. and Bausch, A. (2018). Dynamic capabilities of multinational enterprises: the dominant logics behind sensing, seizing, and transforming matter!, Management International Review, Vol. 58 No. 2, pp. 225-250.
Mcdonald, M.L., Westphal, J.D., Graebner, M.E. (2008). What do they know? The effects of outside director acquisition experience on firm acquisition performance, Strategic Management Journal, 29: 1155–1177.
Messeni Petruzzelli, A., & Murgia, G. (2020). University-industry collaborations and international knowledge spillovers: A joint-patent investigation, The Journal of Technology Transfer, 45(4), 958–983.
Mindruta, D., Moeen, M. and Agarwal, R. (2016). A two-sided matching approach for partner selection and assessing complementarities in partners’ attributes in inter-firm alliances, Strategic Management Journal, Vol. 37 No. 1, pp. 206-231.
Mu, J., Di Benedetto, C.A (2011). Strategic orientations and new product commercialization: mediator, moderator, and Interplay, R&D Management 41, 4, PP:337-359.
Nair, S. R., Demirbag, M., Mellahi, K., & Pillai, K. G. (2018). Do parent units benefit from reverse knowledge transfer?. British Journal of Management, 29(3), 428–444.
O'Dwyer, M., & Gilmore, A. (2018). Value and alliance capability and the formation of strategic alliances in SMEs: The impact of customer orientation and resource optimization, Journal of Business Research, 87, 58–68.
Prebble, R., Anton de Waal, G., and de Groot, C. (2008). Applying multiple perspectives to the design of a commercialization Process, R&D Management, vol. 38, No.3, pp: 311-320.
Rasmussen, E. (2008). Two models for university technology transfer operation: patent agency and 2g. International Journal of Technology Transfer and Commercialisation 5 (4), 291–307.
Schreiner, M., Kale, P., Corsten, D. (2009). What really is alliance management capability and how does it impact alliance outcomes and success? Strategic Management Journal, 30: 1395–1419.
Shakeri, R. (2021). Applying a comprehensive approach to presenting the pattern of organizational learning-deduction, Journal of Human Resources Education and Development, Volume Eighth, No. 30, pp. 240-256. (In Persian)
Shakeri, R. (2021). The performance of the trading strategy of buying and mergers; Design and Explanation of Pattern in Iranian Biological Drugs Industry, Thoughts of Strategic Management, Year 15 (SCU), pp. 237-270. (In Persian)
Shakeri, R., Yaghoubi, N.M. (2021). Partnership Commercialization Strategy Performance: Strategic Coalition, Scientific Journal of Business Management Exploration, Year 13, Issue 26, Autumn and Winter. (In Persian)
Shan, W. (1990). An empirical analysis of organizational strategies by entrepreneurial high-technology firms, Strategic Management Journal 11, PP: 129–139.
Sorrentino, F., Garraffo, F. (2012). Explaining performing R&D through alliances: Implications for the business model of Italian dedicated biotech firms, J Manag Gov, Vol. 16, PP: 449–475.
Teece, D.J. (2018). Dynamic capabilities as (workable) management systems theory, Journal of Management & Organization, Vol. 24 No. 3, pp. 359-368.
Tjemkes, B., Vos, P., & Burgers, K. (2017). Strategic alliance management. Routledge.
Usman, M., Ahmad, M. I., & Burgoyne, J. (2019). Individual and organizational learning from inter-firm knowledge sharing: A framework integrating inter-firm and intra-firm knowledge sharing and learning, Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'Administration, 36(4), 484–497.
Wang, W., Lyu, G., Cui, W., Li, Y. (2020). Strategic technology commercialization in the supply chain under network effects, International Journal of Production Economics, (journal pre-proof), doi:10.1016/j.ijpe.2020.107895.  
Yan, Y., Ding, D., Mak, S. (2009). The Impact of Business Investment on Capability Exploitation and Organizational Control in International Strategic Alliances, Journal of Change Management, Vol. 9, No. 1: 49 – 65.
Zahra, S.A., Nielsen, A.P. (2002). Sources of capabiliyies, integration and technology commercialization, Strategic Management Journal, 23: 377–398.
 Zhao, J., Dong, L., & Xi, X. (2019). Research on the strategic alliance innovation system evolution mechanism: The perspective of knowledge flow, Cluster Computing, 22(4), 9209–9227.
Zollo, M., Meier, D. (2008). What Is M&A Performance?, Academy of Management Perspectives, PP: 55-77.