بررسی ارتباط میان عوامل مؤثر بر ترک خدمت دانشگرانICT در صنعت ارتباطات همراه ایران با استفاده از متدولوژی نقشه‏های شناختی فازی

نوع مقاله: مقاله پژوهشی

10.22111/jmr.2013.999

چکیده

       پژوهش حاضر به منظور بررسی ارتباط میان عوامل مؤثر بر ترک خدمت دانشگرانICTدر صنعت ارتباطات همراه ایران انجام پذیرفته است. جابجایی پرسنل در صنعت ارتباطات همراه از جمله بزرگترین مشکلاتی است که گریبانگیر سازمان‌های فعال در این بخش است. افرادی که به دلایل مختلف از سازمان خود ناراضی‌اند ممکن است به سادگی سازمان را ترک کنند، زیرا به سبب بازار رو به رشد و رقابتی صنعت مذکور، بدیل‌های شغلی متعددی برای آنها قابل تصوراست و امکان یافتن شغل‌های جدید و استخدام در سازمان‌های دیگر وجود دارد. برای انجام پژوهش، پس از بررسی ادبیات موضوع و بهره‏گیری از نظرات خبرگان، پیمایشی در میان صاحبنظران موضوع پژوهش انجام پذیرفت و پرسش‏نامه‏های جمع‏آوری شده با استفاده از آزمون میانگین یک جامعه مورد تحلیل قرار گرفت. نتایج نشان داد که اصلی‏ترین عوامل مؤثر بر ترک خدمت دانشگران ICT عبارتند از: سن، سطح تحصیلات، تصدی سازمانی، جنسیت، حقوق، ابهام نقش، تنوع وظیفه، رضایت شغلی، گزینه‏های شغلی، رئیس بد و عدالت در پاداش؛ سپس‏ با استفاده از متدولوژینقشه‏های شناختی فازی، چگونگی ارتباط میان این عوامل تبیین گردید.

کلیدواژه‌ها


عنوان مقاله [English]

A Study of the Relationship between the Factors Affecting ICT Knowledge Workers’ Turnover in Iranian Mobile Telecommunication Industry Using Fuzzy Cognitive Maps Methodology

چکیده [English]

The current research has been conducted in order to study the relationship between factors affecting ICT knowledge workers’ turnover in Iranian mobile telecommunication industry. Personnel turnover in mobile telecommunication industry is one of the greatest problems facing organizations active in this sector. People, who are unsatisfied with the organization where they work, may simply leave it, because due to the growing and competitive market of this industry, many job alternatives are available to them and it is possible for them to find new jobs and to be employed by other organizations. In order to conduct this research, after reviewing the literature and seeking experts’ opinions, a survey was performed among the research experts and collected questionnaires were analyzed using one sample test. Results suggested that the main factors affecting ICT knowledge workers’ turnover include: age, educational level, organizational tenure, gender, salary, role ambiguity, task variety, job satisfaction, job alternatives, bad boss and fairness of the reward. Then, using fuzzy cognitive maps methodology, the relationship between these factors was explained.

کلیدواژه‌ها [English]

  • ICT Knowledge Worker
  • Turnover
  • Fuzzy Cognitive Maps and Mobile Telecommunication Industry
2-Heeks, R.(2008).ICT4D 2.0: The Next Phase of Applying ICT for International Development. IEEE Computer 41 (6): 26-33.
3-Shoaib, M., Noor, A., Tirmizi, S.R.,Sajid B.(2009). Determinants of Employee Retention in Telecom Sector of Pakistan. Proceedings 2nd CBRC, Lahore, Pakistan.
4-Ghapanchi, A.H., Aurum, A.(2010). Antecedents to IT personnel’s intentions to leave: A systematic literature review. J.Syst. Software.
5-Armstrong, M., (2008). Strategic Human Resource Management: a guideto action, 4th edition, Kogan Page.
6-Price, J. L. (1977). The study of turnover. Ames: Iowa State University Press.
7-American Management Association. (1997). Retention management strategies, practices, trends. New York: Saratoga Institute.
8-Wasmuth W.J., Davis S.W., (1983). Managing employee turnover: why employees leave.The Cornell HRA Quarterly, pp. 11-18.
9-Joseph, D., Ang, S., (2003). Turnover of IT professionals: a quantitative analysis of the literature. In: Proceedings of the SIGMIS Conference on Computer Personnel Research: Freedom in Philadelphia—Leveraging Differences and Diversity in the IT Workforce, Philadelphia, PA.
10-Niederman, F., Sumner, F., Maertz Jr., C.P.(2006). An analysis and synthesis of research related to turnover among IT personnel. In: Proceedings of the ACM SIGMIS CPR Conference on Computer Personnel Research, California, USA.
11-Joseph, D., Kok-Yee, N., Koh, C., Ang, S.(2007). Turnover of information technology professionals: a narrative review, meta-analytic structural equation modeling, and model development. MIS Quarterly 31 (3), 547–577
12-Abassi, S.M., Hollman, K.W.(2000). Turnover: the real bottom line, Public Personnel Management, 2 (3):333-342.
13-Oltom, B. C., Mitchell, T. R., Lee, T. W., Inderrieden, E. J. (2005). Shocks as causes of turnover: What they are and how organizations can manage them. Human Resource Management, 44(3): 337–352.
14-Blau, G.,Boal, K. (1989). Using job involvement and organizational commitment interactively topredict turnover. Journal of Management, 15(1), 115-127.
15-Hom, P.,Griffeth, R. (1995). Employee turnover. Cincinnati, OH: Southwestern.
16-Tett, R., Meyer, J.(1993). Job satisfaction, organizational commitment, turnover intention, and turnover: Path analyses based on meta-analytic findings. Personnel Psychology, 46(2), 259-293.
17-Lambert, E., Hogan, N., Barton, S. (2001). The impact of job satisfaction on turnover intent: A test of a structural measurement model using a national sample ofworkers. The Social Science Journal, 38, 233-250.
18-Harter, J., Schmidt, F., Hayes, T. (2002). Business-unit-level relationship between employee satisfaction, employee engagement, and business outcomes: A meta-analysis. Journal of Applied Psychology, 87(2), 268-279.
19-Peterson, S. L. (2004). Toward a theoretical model of employee turnover: A human resource development perspective. Human Resource Development Review, 3(3): 209–227.
20-Zheng, C. and Lamond, D. (2010). Organizational Determinants of Employee Turnover for Multinational Companies in Asia, Asia Pacific Journal of Management. 27: 423-443.
21-Rodriguez-Repiso, L. (2005). Indicators of Success for IT Projects. CaseStudy. MSc Systems Engineering with IT Applications.CardiffUniversity.
22-Schneider, M., Shnaider, E., Kandel, A., Chew, G. (1998). Automaticconstruction of FCMs. Fuzzy Sets and Systems, 93, 161–172.
23-Asher, H. (1983). Causal modeling. Beverly Hills, CA: Sage Ed.