طراحی الگوی خط‌مشی‌گذاری عمومی مبتنی بر هوش مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت دولتی گرایش تصمیم‌گیری و خط‌مشی‌گذاری عمومی، دانشگاه تهران. ایران.

2 استاد تمام، دانشکدگان مدیریت و دانشکده علوم اداری و سازمانی، گروه خط‌مشی‌گذاری عمومی و مدیریت دولتی دانشگاه تهران، تهران، ایران.

3 استاد تمام، دانشکدگان مدیریت و دانشکده علوم اداری و سازمانی، هیات علمی مدیریت دولتی دانشگاه تهران، تهران، ایران.

10.22111/jmr.2025.48083.6156

چکیده

 سیستم‌های خط‌مشی‌گذاری عمومی، در گذشته، در همه‌ی مراحل خط‌مشی از شناسایی مشکل گرفته تا خاتمه بخشی و مستندسازی بود؛ در مقایسه هزینه و منفعت دقیق گزینه‌ها، ناتوان بودند. در این دوران، دانشمندان تلاش می‌کردند با توسعه‌ی ادبیات دانش خط‌مشی‌گذاری و خط‌مشی‌پژوهی بتوانند ظرفیت‌های بالقوه‌ای برای موفقیت خط‌مشی‌های عمومی فراهم آورند و نوعی بینش راهبردی کلان در مواجهه با مسائل عمومی در اختیار خط‌مشی‌گذاران (فارغ از سنجش همه‌ی بدیل‌های ممکن) قرار دهند تا شاید با آزمون و خطا و در بسیاری از موارد، فارغ از پیامدهای تسلسلی هزینه‌های مادی، اجتماعی و حتی فرا‌نسلی، مساله‌ی عمومی را در قالب مدل‌های رضایت‌بخش، حل کنند. اما، امروزه، به دلیل ظرفیت بی‌نظیر دانش حاصل از هوش مصنوعی و هوش تصمیم‌گیری مبتنی بر داده، تحقق مدل خط‌مشی‌گذاری عقلایی عملی‌تر به نظر می‌رسد. گویا با دسترسی انسان به هوش مصنوعی و ظرفیت پردازش میلیون‌ها داده و اطلاعات در کسری از ثانیه امکان بازگشت به عقلانیت در دانش خط‌مشی‌گذاری تحقق یافته است. پژوهش پیشِ رو تلاش دارد با ملاحظه امکان استفاده از هوش مصنوعی در طراحی الگوی خط‌مشی‌گذاری، در جهت بیشینه کردن منفعت‌ها و کمینه کردن هزینه‌ها، در چهار عرصه‌ی اداره عمومی، سیاسی، اقتصادی و حیات اجتماعی، گام بردارد. پژوهش حاضر درصدد است در پرتو پاداریم ساخت‌گرایی و بر اساس راهبرد داده بنیاد کلاسیک و مصاحبه با ۱۱ نفر از خبرگان متخصص در حوزه های علم اداره، خط‌مشی‌گذاری عمومی، دانش هوش‌ مصنوعی، برنامه‌نویسی و فلسفه‌ی زبان بتواند نوعی الگوی جامع با دو بخش حاصل آورد: بخش اول، ویژگی‌های خط‌مشی تراز عمومی را نشان می‌دهد و بخش دوم، ظرفیت‌ها و اکوسیستم خلاقیت و نوآوری دانش خط‌مشی‌گذاری و هوش مصنوعی را مدنظر قرار می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a Public Policy-Making Model Based on Artificial Intelligence

نویسندگان [English]

  • Siavash Rafiei 1
  • Ali Asghar Pourezzat 2
  • Abbas Monavarian 3
1 PhD student of public administration, majoring in decision-making and public policy, University of Tehran.Iran.
2 Full Professor, College of Management and Faculty of Public Administration and Organization Science, Department of Public Policy and Administration, University of Tehran, Iran.
3 Full Professor,College of Management and Faculty of Public Administration and Organization Science, University of Tehran, Iran.
چکیده [English]

Abstract
In the past, public policy-making systems were involved in all stages of policy-making, from problem identification to termination and documentation. However, they were unable to precisely compare the costs and benefits of options. During thisperiod, scholars tried to develop the literature of policy-making and policy research to provide potential capacities for the success of public policies and to offer a kind of strategic insight in dealing with public issues to policy-makers (regardless of evaluating all possible alternatives). This was done with the hope that through trial and error, and in many cases, regardless of the sequential consequences of material, social, and even intergenerational costs, public issues could be solved within the framework of satisfactory models.
However, today, due to the unprecedented capacity of knowledge derived from artificial intelligence and data-driven decision-making intelligence, the realization of a rational policy-making model seems more feasible.
Introduction
Historically, public policymaking systems operated within inherent limitations—constrained by informational deficits and analytical incapacity—leading to an acceptance of systemic inefficacy. The nascent discipline of public policy thus emerged amid foundational shortcomings. However, within a century of conceptualizing policy autonomy, a resurgence of rationality is now imperative. Modern societies, armed with AI-driven decision intelligence and computational prowess (Xu et al., 2021), are redefining governance through machine learning, predictive algorithms, and data-centric paradigms (Eyert et al., 2022). Innovations like autonomous transport and algorithmic regulation (Jung, 2022) exemplify AI’s transformative potential in public administration. Healthcare analytics (Morley et al., 2022) and equitable resource allocation (Robles & Mallison, 2023) demonstrate AI’s capacity to enhance efficacy and equity. This evolution prompts a critical inquiry: does AI herald a new paradigm (Hood, 1991) in policymaking? By integrating stakeholder interests (Gellers, 2021) and leveraging big data, AI promises to mitigate inequalities and optimize resource distribution. The exponential growth of AI research (Duan et al., 2019) underscores its role in advancing decision-support systems, expert systems, and scenario-based policymaking, ultimately redefining rationality in governance.
Case study
Interviews were conducted with 11 expert specialists in the fields of public administration, public­­­­­­policy-making, artificial intelligence, programming, and philosophy of language
Materials and Methods
This research employs a qualitative approach utilizing the classic grounded theory method (Glaser, 1978:7). In terms of purpose, it is an applied study designed to advance public policy knowledge through the application of artificial intelligence and rational decision-making frameworks.
Discussion and Results
The AI-based public policy-making model presents a transformative approach that comprehensively addresses current and future societal needs through advanced spatiotemporal analytical frameworks. This innovative model integrates policy science with artificial intelligence capabilities to systematically rationalize the construction of social reality, creating a dynamic innovation ecosystem where interconnected cognitive policy networks process vast amounts of public data to inform political and administrative decision-making processes. The model's architecture demonstrates several distinctive features: its data governance framework facilitates real-time information aggregation, continuous machine learning, and evidence-based decision cycles while rigorously maintaining ethical governance protocols.
Conclusion
 The system generates balanced policy outputs through sophisticated algorithmic analysis of alternatives, effectively filtering out impractical options and promoting intergenerational equity. Its innovation infrastructure includes policy laboratories, intelligent decision-support mechanisms, and comprehensive performance assessment modules that leverage AI's predictive analytics capabilities. However, the implementation landscape faces significant challenges, including the risk of policy system failure due to the accumulation of unenforceable measures that may exacerbate bureaucratic inefficiencies and social disorder. Furthermore, limitations in human and material capital investment threaten the ecosystem's sustainability and may intensify brain drain and the proliferation of unsubstantiated knowledge systems. This fundamental paradigm shift redefines traditional notions of policy rationality through AI's unparalleled analytical capacities while simultaneously addressing the complex challenges of systemic vulnerability in modern governance structures. The convergence of computational policy-making and institutional frameworks heralds a new era of evidence-based governance, though its successful implementation requires careful navigation of both technological and socio-political dimensions.

کلیدواژه‌ها [English]

  • Rational Policy-Making
  • Policylevel
  • Creativity and Innovation Ecosystem
  • Artificial Intelligence
منابع فارسی
برهانی، تهمینه، پورعزت، علی اصغر، منوریان، عباس. (1401). به کارگیری رویکرد کیفی فراترکیب به منظور ارائه الگوی طراحی آزمایشگاه خط‌‌مشی.  چشم انداز مدیریت دولتی، (1) 13، 97-115.
برهانی، تهمینه، منوریان، عباس، پورعزت، علی اصغر، استادعلی دهقی، رضوان. (1402). ارائه الگوی طراحی آزمایشگاه خط ‌مشی. مجله دانش پژوهان اقتصاد، تجارت و مدیریت، 2، 52-62.
پورعزت، علی اصغر، مومن زاده، پربا، رفیعی، سیاوش، بهشتی روی، سیدحمید. (1402). سیستم پشتیبان خط‌‌‌‌‌مشی‌‌‌‌‌گذاری عمومی، تهران: انتشارات حکمرانی. ویرایش دوم.
پورعزت، علی اصغر، ماه بانوئی، بهاره، قاسمی، روح الله، رفیعی، سیاوش. (1401). سیستم ارزشیابی عملکرد دوره ای (ساعد) حکمرانی، تهران: انتشارات دانشگاه تهران .چاپ دوم.
مومن زاده، پریا، پورعزت، علی اصغر، حمیدی زاده، علی. (1402). طراحی سیستم پشتیبان خط‌‌‌‌‌مشی‌‌‌‌‌گذاری برای مهار بحران آب آینده، تحقیقات آب منابع ایران، دوره 20.
منوریان، عباس. (۱۳۹۶). تحلیل خط‌مشی عمومی؛ مفاهیم، رویکردها، مدل ها و فرایند‌ها. تهران: انتشارات دانشگاه تهران. چاپ اول.
منوریان، عباس. (۱۳۹۷). اجرا و ارزشیابی عملکرد، تهران: انتشارات مهربان، چاپ اول.
محمدپور، احمد. ( 1397). ضد روش: زمینه‌های فلسفی و رویه‌های عملی در روش‌شناسی کیفی. قم: لوگوس، چاپ اول.
References
Anyoha, R. (2017). The history of artificial intelligence. science in the news is a graduate student group at the harvard graduate school of the arts and sciences. https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence.
Beaumier, G., & Kalomeni, K. (2021). Ruling through technology: politicizing blockchain services. Review of International Political Economy, 29(6), 2135–58.
Burhani, T., Pourezzat, A., & Monavrian. A. (2022). Applying a meta-composite qualitative approach in order to provide a policy laboratory design model. Public Administration Perspective, (1)13. (In Persian)
Borhani, T., Monavarian, A., Pourezzat, A., & Ostadalidehaghi, R. (2024). Presentation of the public policy laboratory design model. School Journal of Econimic Bussines Management, 2, 52-62.
Casares, A. P. (2018). The brain of the future and the viability of democratic governance: The role of artificial intelligence, cognitive machines, and viable systems. Futures, (103), 5-16.
Cihon, P., Matthijs, M. M,, & Kemp. L. (2020). Fragmentation and the future: investigating architectures for international ai governance. Global Policy, 11(5), 545–56.
Corea, F. (2019). AI knowledge map: how to classify ai technologies, 50: 25-29. https://doi.org/10.1007/978-3-030-04468-8_4
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71.
Economic Development Cooperation and Expansion Organization. https://www.oecd.org/sti/science-technology-innovation-outlook/technology-governance. (In Persian)
Epp, D. A. (2017). Public policy and the wisdom of crowds. Cognitive Systems Research, 43, 53–61.
Erman, E., & Furendal, M. (2022). The global governance of artificial intelligence: some normative concerns. Moral Philosophy and Politics, 9(2), 267–91.  
Eyert, Florian, Florian Irgmaier, and Lena Ulbricht. (2022). Extending the framework of algorithmic regulation: the uber case. Regulation and Governance, 16(1), 23– 44.
Flint, D. (1998). Change in customers' desired value: a grounded theory study of its nature and process based on customers' lived experiences in the U.S. automobile industry. Doctoral dissertation, The University of Tennessee.
Glaser, B. (1978). Theoretical sensitivity: advances in the methodology of grounded theory, Sociology Press. Mill Valley, CA.
Glaser, B. (1998). Doing grounded theory: issues and discussions, Sociology Press. Mill Valley, CA.
Glaser, B. (2005). The grounded theory perspective III: theoretical coding, Sociology Press. Mill Valley, CA.
Helmholz, P., Nolte, M., & Schmitt, M. ( 2024).  AI in public governance: an expert survey on the impact of data driven decision making in politics. Available at SSRNhttps://ssrn.com/abstract=4787049 or http://dx.doi.org/10.2139/ssrn.4787049
HOOD, C. (1991). A public management for all seasons? Public Administration, 69(1), 3–19.
Ingrams, A., Wesley, K., & Daan, J. (2021). In ai we trust? citizen perceptions of ai in government decision making. Policy and Internet, 14(2), 390– 409.
Lechterman, T. M. (2024). The concept of accountability in ai ethics and governance in Justin B. Bullock et al. (eds), The Oxford handbook of ai governance. Oxford Handbooks. Oxford University Press.
Monavarian, A. (2018). Implementation and performance evaluation. Mehraban Publications. Tehran, first edition. (In Persian)
Monavarian, A. (2017). Public policy analysis; concepts, approaches, models and processes. Tehran University Publications. (In Persian)
Mohammadpour, Ahmed. (2017). Anti-Methodology: Philosophical backgrounds and practical procedures in qualitative methodology. Qom: Logos, first edition. (In Persian)
Momenzadeh,P., Pourezat, A., & Hamidizadeh, A.(2023). Designing a policy support system to curb the water crisis in the future Iran's water resources research, 20. (In Persian)
Morley, J., Murphy, L., Mishra, A., Joshi, I., & Karpathakis, K. (2022). Governing Data and Artificial Intelligence for Health Care: Developing an International Understanding. JMIR FormativeResearch, 6(1), e31623.
Papadakis, T., Christou, I. T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6, e10.
Pourezzat, A., MahBanooei, B., Ghasemi, R., & Rafiei, S. (2022). Periodic performance evaluation system (SAED) of governance. Tehran: Tehran University Press. (In Persian)
Pourezzat, A. A. (2008). Strategic management of the future-oriented approach to public interests. Imam Sadiq University (AS). First edition. (In Persian)
Pourezzat, A., Momenzadeh,P., Rafiei,S., & BeheshtiRoy, S. H. (1401). Public policy support system. Tehran: Governance Publications. (In Persian)
Robles, P., & Mallinson, D. J. (2023). Artificial intelligence technology, public trust, and effective governance. Review of Policy Research, 00, 1– 18.
Rothschild-Whitt, J. (1979). The collectivist organization: An alternative to rational-bureaucratic models. American Sociological Review, 509-527.
Simon, H. A. (1972). Theories of bounded rationality. Decision and Organization, 1(1), 161-176.
Ulnicane, I., & Aden, A. (2023). Power and politics in framing bias in artificial intelligence policy. Review of Policy Research, 00, 1–23.
Van den Homberg, M. J. C., Gevaert, C. M., & Georgiadou, Y. (2020). The changing face of accountability in humanitarianism: using artificial intelligence for anticipatory action. Politics and Governance, 8(4), 456– 67.
Wall, L. D. (2018). Some financial regulatory implications of artificial intelligence. Journal of Economics and Business, (100), 55-63.
Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., et al. (2021). Artificial intelligence: a powerful paradigm for scientific research. Innovation, 28.