نوع مقاله: مقاله پژوهشی
چکیده
کلیدواژهها
عنوان مقاله [English]
Time and uncertainty in the strategic planning process play an important role. In today's changing world, having a commensurate strategy with changing environmental conditions is very important and Classical approaches in strategy fomulation can’t to respond appropriate and quickly to needs of organizations In such a dynamic and uncertain environment. Fuzzy decision tree that is result of combining ID3 algorithm and fuzzy sets theory, provides a systematic model that Organizations can use it to response appropriate and quickly against changes in turbulent environments. Another advantage of this approach is Its ability to work with liguistic variables that resulted knowledge from it, has High understanding for human. This approach due to be fuzzy can to repel with uncertainty and by considering different states in database has appropriate reaction in dealing with environmental changes. this research, At first identify involved main attribute in the strategy fomulation and acts to creat the date base and decision tree with use of entropy calculating to be achieved rules base. Finally, to be fuzzy making inputs and outputs, fuzzy inference system offers precedences strategies.
کلیدواژهها [English]
منابع فارسی
1- آذر، عادل، فرجی، حجت،(1387)، علم مدیریت فازی، مرکز مطالعات مدیریت و بهرهوری ایران.
2- بوجادزیف، ماریا، بوجادزیف، جرج،(1381)، «منطق فازی و کاربردهای آن در مدیریت»، سیدمحمد حسینی، انتشارات ایشیق، چاپ اول.
3- گودرزی، محمدرضا، کنگاوری، محمدرضا، (1383)، یادگیری درخت تصمیم فازی، پنجمین کنفرانس سیستمهای فازی ایران، ص125.
منابع انگلیسی
1- Baricelli, P., Lucas,C., Messina,E., Mitra, G. (1994) .“A model for strategic planning under uncertainly”, Sociadad Estadistica e Investigacion operative, Vol.4.
2- Belt, J.E., Bashore, E. (2000). “Managed care strategic planning the reality of uncertainty”, Healthcare Financial Management.
3- Beynon, Malcolm, J, Peel, Yu-Cheng Tang.(2004).“The application of fuzzy decision tree analysis in an exposition of the antecedents of audit fees”, omega, The International Journal of management sciece, Volume 32, Issue 3, pp. 231-244.
4- Chang Qin, Zeng, Lawery, Jonathan.(2005).“ Decision Tree Learning with Fuzzy Labels”, Information Sciences 172.
5- Cover, T,M., Thomas, A.(2006). “Elements of information theory”, Second Edition, A jhon Wiley& Sons, INC., Publications.
6- Guoxiu, Liang.(2005). “A comparative study of three decision Tree algorithms: ID3, Fuzzy ID3 and probabilistic fuzzy ID3”, Bachelor thesis, Informatics & economics Erasmus university Rotterdam roterdam, the Netherlands, pp.5-7.
7- Ignizio, J.P.(1991). “Itroduction to expert systems: the development and implementaion of rule based expert system”, McGraw-Hill, Inc, pp.101-134.
8- Jackson, Peter.(1990). “Introduction to expert systems”, secound edition, Addison Wesley Publishing Company; 2ndedition.
9- Jang, j. (1994). “ Staructure determination in fuzzy modeling: A fuzzy CART approach”, Proc. IEEE Conf on Fuzzy Systems, pp.480- 485.
10- Janikow, Cezary.(1998). “Fuzzy Decision Trees: Issues and Methods”, IEEE – transactin on systems, Man, and cybernetics – Part B: Cybernetics, Vol. 28, No. 1, pp.1-14.
11- Janikow, Z. Cezary, Fajfer, Maciej.(2000). “ Bottom- up Fuzzy Partitioning in Fuzzy Decision Trees”.
12- Mitchell, T.M. (1997). Machine learning, Mac Graw- Hill, p.52.
13- Pang Huang, Han, Chiun Liang, Chao. (1998). “ A Learning Fuzzy Decision Tree and its Aplplication to Tactile Image”, Proceedings of the 1998 IEEERSI Intl. Conference on Intelligent Robots and Systems Victoria, B.C., Canada, p.1578.
14- Sushmita Mitra, Kishorim, Konwar and Sankar K.Pal.(2002). “Fuzzy decision tree, linguistic rules and fuzzy knowledge – based network: Generation and Evaluation”, IEEE transaction on systems, Man and cybernetics – partC: applications and reviews, Vol.32, No, 4.